Primary decomposition of zero-dimensional ideals over finite fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primary decomposition of zero-dimensional ideals over finite fields

A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp’s algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a...

متن کامل

Primary decomposition of zero-dimensional ideals: Putting Monico’s algorithm into practice

Monico published in [Journal of Symbolic Computation, 34(5):451–459, 2002] an algorithm to compute the primary decomposition of a zero-dimensional ideal, that mostly relies on a characteristic polynomial computation modulo the input ideal, and its factorization. We revisit this algorithm, and discuss Maple and Magma implementations that contradict the somehow pessimistic conclusions of Monico’s...

متن کامل

Zero-cycles on varieties over finite fields

For any field k, Milnor [Mi] defined a sequence of groups K 0 (k), K M 1 (k), K M 2 (k), . . . which later came to be known as Milnor K-groups. These were studied extensively by Bass and Tate [BT], Suslin [Su], Kato [Ka1], [Ka2] and others. In [Som], Somekawa investigates a generalization of this definition proposed by Kato: given semi-abelian varieties G1, . . . , Gs over a field k, there is a...

متن کامل

Evaluation techniques for zero-dimensional primary decomposition

This paper presents a new algorithm that computes the local algebras of the roots of a zero-dimensional polynomial equation system, with a number of operations in the coefficient field that is polynomial in the number of variables, in the evaluation cost of the equations and in a Bézout number.

متن کامل

On Wavelet Decomposition over Finite Fields

Abstract – This paper introduces some foundations of wavelets over Galois fields. Standard orthogonal finite-field wavelets (FFWavelets) including FF-Haar and FFDaubechies are derived. Non-orthogonal FFwavelets such as B-spline over GF(p) are also considered. A few examples of multiresolution analysis over Finite fields are presented showing how to perform Laplacian pyramid filtering of finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2009

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-08-02115-7